BAG at Diamond Light Source

Block Allocation Group (BAG) Programme Mode Application to Diamond Light Source:

The BAG explained

The UK Catalysis Hub BAG aims to provide members of the Hub network and all groups doing catalytic science in the UK with frequent and flexible access to B18, sending out two calls for proposals per cycle. One advantage of sending out two calls for proposals per cycle, is that our users can obtain beamtime on a rapid turnaround, which has been especially useful when additional measurements are required on a short timescale to finish pieces of work for publication.

The dates of calls for proposals are set by Diamond light source and will be sent to the Mailing list, to sign up for the mailing list here.

We are committed to increasing the user base of XAFS in the catalyst community, and so in part the BAG works as a training scheme. The team at Harwell guides new users through the proposal and experimental stages, showing them the potential of XAFS for their projects and training them on the analysis of their data. We ask all PI to be named on their proposal and also to indicate which member of their group will be responsible for the beamtime measurements, and who will learn how to analyse the data

Submitting  a proposal
Ex Situ

Ex situ samples are generally made from powder, pressed into pellet form, however liquids, films and powders can also be measured. To submit a proposal for in situ measurement, please fill in the form which can be accessed through this link.

2023 EX Situ Proposal Form

Please send the completed form in PDF format to Dr Martin Wilding.

Please feel free to discuss any proposed ex-situ measurement with the BAG management team prior to submission.

In Situ

All in situ experiments must be discussed with the BAG management team beforehand.
Please contact the BAG officer: Dr Martin Wilding (wildingM2@cardiff.ac.uk) to set up a meeting with the EXAFS experts in the Hub. After this initial discussion we will send you an in situ application form.

UVXAF Sstop flow cell

Process

Submitted proposals are assessed by a panel, comprising representation from Hub scientists, and representatives from two other institutions (changed on a rolling basis). The latter positions are filled by researchers in catalysis, one of whom usually has XAFS experience. The BAG allocation prioritises access based on:

  • scientific excellence,
  • feasibility,
  • attracting new users and new areas of catalytic science, and
  • maximising efficiency.

Both in situ /operando studies and standard ex situ (rapid access and proof of concept) measurements are facilitated, with generally an even mix of the two proposal types being awarded time. Due to our aim of attracting new and inexperienced users to XAFS, proposals are not often accepted ‘as is’ but redesigned to make the best use of time and provide the user with the measurements they need. In this way, we plan the BAG shifts to facilitate the greatest number of projects efficiently. No single user is awarded more than 3 shifts in any one call and we limit experienced users of XAFS to short bursts of time: in this way the BAG should not serve as an ‘easy’ access to B18 for those who should apply through the Direct Access Route.

It is important to note that that for heavy users of synchrotron facilities this method of access will only play a small contribution to the amount of time they require. Their role within the BAG proposal is to provide the interface between the inexperienced members and Diamond, enabling a larger cross section of the UK Catalysis Hub network to benefit from the techniques available. These users may receive small amounts of flexible access, where required, to assist in finishing research projects and hasten subsequent publications.

I have been awarded time in the BAG, what now?
Before the experiment

Session investigators

Once you are notified that your proposal has been awarded time on the BAG, please make sure that you let the BAG coordinator know who on your team will be attending the experiment. All those planning to come to Diamond must be registered in UAS (https://uas.diamond.ac.uk/uas/) and must have watched the health and safety video and completed the test (https://www.diamond.ac.uk/Users/Experiment-at-Diamond/Before-you-Arrive/Safety-Video-and-Test.html).

Experimental Risk Assessment

The Principal Investigator or Alternate Contacts need to submit the ERA (Experimental Risk Assessment) in UAS. All the samples and any equipment that will be brought to Diamond must be specified in the ERA. If it is necessary to bring your own sample environments please discuss this in advance with the BAG coordinator. The ERA template can be found using this link – BAG Risk Assessment.

Travel, subsistence and accommodation

If your scheduled experiment requires overnight accommodation on-site, the BAG coordinator will organise that for you and will let you know the details. However, you will have to organise your own travel arrangements. Please note that Diamond will only cover the subsistence for the Core Team, so you will have to pay for your meals and claim the money back.

Please note that only one person will be funded per ex situ proposal and two per in situ proposal.

To find details about how to travel to Diamond, please visit: https://www.diamond.ac.uk/Users/Experiment-at-Diamond/Before-you-Arrive.html

Sample Shipment

Sometimes it is simpler to ship your samples to us. Samples being shipped should be address to:

BAG coordinator
UK Catalysis Hub, Research Complex at Harwell
Rutherford Appleton Laboratory,
Harwell,
Oxfordshire, OX11 0FA

During the experiment

When you arrive at Diamond you will be given an access card. This is usually at the main security gate to site. The card will be pre-loaded with the appropriate access for your session. If there are difficulties with your card please contact the user office (ext. 8571). Please wear your access card at all times and return the card, along with the lanyard at the end of your session.

Once on the beamline, please follow the instructions given by the BAG coordinator and or local contacts in charge of the experiment. The way the BAG works, it is difficult to follow the scheduled timetable. Please be patient if your experiment is delayed from the initial estimated time.

After your experiment
Experimental Report

All proposals require a report once the session scheduled in that proposal are complete.

In all cases this report should include any changes in methodology that were required and highlight key results as well as indicate the status of the project(s) in light of these results. Experiment Reports are made available to the Peer Review Panel when they are considering further proposals from the same Principal Investigator and failure to submit a report can be considered detrimental for future access.

You can find the report template using this link – BAG Report Template

Publications

Users publishing work containing synchrotron data from Diamond Light Source should ensure they acknowledge Diamond in all publications (including conference proceedings) arising from work carried out wholly or partially at Diamond. The following acknowledgement statement must be included in all published reports:

“The authors wish to acknowledge the Diamond Light Source for provision of beamtime (proposal number).”

Please also inform the BAG coordinator of all Publications arising from the BAG.

Track record

Through SP8071, SP10306, SP15151 and SP19850, 87 days (excluding reassigned days) have been received. Since the first beamtime allocation period, 67 articles have been published, which is an average of <1œ days beamtime per paper; the growth is shown in Fig. 1.

BAG publications track record diagram

 

Publications
Long ?Fei figureBAG Impact Case Study: Quantitative production of butenes from biomass-derived Îł-valerolactone catalysed by hetero-atomic MFI zeolite
UK scientists have used synchrotron X-ray techniques to help develop a catalyst that converts biomass into fuel efficiently, potentially leading to a more sustainable source of petrochemicals for use in industry. Converting biomass into light olefins – the group of petrochemicals that includes ethene, propene and butene – requires a catalyst and a lot of energy to convert the waste from organic matter such as wood or grass. Researchers led by the University of Manchester designed a highly efficient zeolite catalyst that uses less energy to produce the olefins from renewable biomass sources. Read more
    1. Ruiz Esquius, Jonathan, Morgan, David J., Algara Siller, Gerardo, Gianolio, Diego, Aramini, Matteo, Lahn, Leopold, Kasian, Olga, Kondrat, Simon A., Schlögl, Robert, Hutchings, Graham J., Arrigo, Rosa, Freakley, Simon J., “Lithium-Directed Transformation of Amorphous Iridium (Oxy)hydroxides To Produce Active Water Oxidation Catalysts”, J. Am. Chem. Soc. 2023, 145, 11, 6398–6409, https://doi.org/10.1021/jacs.2c13567
    2. Run Zou, Sarayute Chansai, Shaojun Xu, Bing An, Shima Zainal, Yangtao Zhou, Ruojia Xin, Pan Gao, Guangjin Hou, Carmine D’agostino, Stuart M. Holmes, Christopher Hardacre, Yilai Jiao, Xiaolei Fan, “Pt nanoparticles on beta zeolites for catalytic toluene oxidation: effect of the hydroxyl groups of beta zeolite” Chemcatchem (2023), DOI: 10.1002/cctc.202300811
    3. Priyanka Verma, Kohsuke Mori, Yasutaka Kuwahara, Maela Manzoli, Sara Morandi, Choji Fukuhara, Robert Raja, Hiromi Yamashita, “Amine functionalization within hierarchically‐porous zeotype framework for plasmonic catalysis over PdAu nanoparticles”, Chemcatchem (2023), DOI: 10.1002/cctc.202201182
    4. Jichao Zhang, Xuedan Song, Liqun Kang, Jiexin Zhu, Longxiang Liu, Qing Zhang, Dan J. I. Brett, Paul R. Shearing, Liqiang Mai, Ivan P. Parkin, Guanjie He “Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions”, Chem Catalysis (2023), 121, DOI: 10.1016/j.checat.2022.09.023
    5. Yujie Ma, Xue Han, Shaojun Xu, Zhe Li, Wanpeng Lu, Bing An, Daniel Lee, Sarayute Chansai, Alena M. Sheveleva, Zi Wang, Yinlin Chen, Jiangnan Li, Weiyao Li, Rongsheng Cai, Ivan Da Silva, Yongqiang Cheng, Luke L. Daemen, Floriana Tuna, Eric J. L. Mcinnes, Lewis Hughes, Pascal Manuel, Anibal J. Ramirez-Cuesta, Sarah J. Haigh, Christopher Hardacre, Martin Schroeder, Sihai Yang, “Direct conversion of methane to ethylene and acetylene over an iron-based metal–organic framework”, Journal Of The American Chemical Society (2023), DOI: 10.1021/jacs.3c03935
    6. Jose Pinto, Andreas Weilhard, Luke T. Norman, Rhys W. Lodge, David M. Rogers, Aitor Gual, Israel Cano, Andrei N. Khlobystov, Peter Licence, Jesum Alves Fernandes, “Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium-gold nanoparticles coursing in the hydrogenation of cinnamaldehyde”, Catalysis Science & Technology (2023), DOI: 10.1039/D3CY00289F
    7. Wijnand Marquart, Michael Claeys, Nico Fischer, “CO2 reduction and C2H6 dehydrogenation over SiO2 supported molybdenum carbide nanoparticles”, Applied Catalysis A: General (2023), 3,DOI: 10.1016/j.apcata.2023.119291
    8. Motlokoa Khasu, Wijnand Marquart, Patricia J. Kooyman, Charalampos Drivas, Mark Isaacs, Alexander J. Mayer, Sandie E. Dann, Simon Kondrat, Michael Claeys, Nico Fischer “Empowering catalyst supports: a new concept for catalyst design demonstrated in the Fischer-Tropsch synthesis,” Acs Catalysis (2023) 1, 6862 6872, DOI: 10.1021/acscatal.3c00924
    9. Mohammed J. Islam, Marta Granollers Mesa, Amin Osatiashtiani, Martin J. Taylor, Mark A. Isaacs, Georgios Kyriakou, “The hydrogenation of crotonaldehyde on PdCu single atom alloy catalysts”, Nanomaterials (2023) 13, DOI: 10.3390/nano13081434
    10. Thulani M. Nyathi, Mohamed I. Fadlalla, Nico Fischer, Andrew P. E. York, Ezra J. Olivier, Emma K. Gibson, Peter P. Wells, Michael Claeys, ”Co3O4/TiO2 catalysts studied in situ during the preferential oxidation of carbon monoxide: the effect of different TiO2 polymorphs”, Catalysis Science & Technology (2023) 151, DOI: 10.1039/D2CY01699K
    11. Priyanka Verma, Kohsuke Mori, Yasutaka Kuwahara, Maela Manzoli, Sara Morandi, Choji Fukuhara, Robert Raja, Hiromi Yamashita, “Amine functionalization within hierarchically‐porous zeotype framework for plasmonic catalysis over PdAu nanoparticles”, Chemcatchem (2023), DOI: 10.1002/cctc.202201182
    12. Chitra Sarkar, Ratul Paul, Duy Quang Dao, Shaojun Xu, Rupak Chatterjee, Subhash Chandra Shit, Asim Bhaumik, John Mondal “Unlocking molecular secrets n a monomer-assembly-promoted Zn-metalated catalytic porous organic polymer for light-responsive CO2 insertion”, Acs Applied Materials & Interfaces (2023), DOI: 10.1021/acsami.2c06982
    13. Man Zhang, Shaojun Xu, Mebrouka Boubeche, Donato Decarolis, Yizhe Huang, Biying Liu, Emma K. Gibson, Xin Li, Yuchen Wang, Huixia Luo, C. Richard A. Catlow , Kai Yan, “Designed TiS 2 nanosheets for efficient electrocatalytic reductive amination of biomass-derived furfurals”, Green Chemistry (2022) 9, DOI: 10.1039/D2GC03234A
    14. Inns, D.R.; Pei, X.; Zhou, Z.; Irving, D.J.M.; Kondrat, S.A., The influence of phase purity on the stability of Pt/LaAlO3 catalysts in the aqueous phase reforming of glycerol, Materials Today Chemistry, Volume 26, 2022, 101230, DOI: https://doi.org/10.1016/j.mtchem.2022.101230
    15. Zhang, Jichao; Song, Xuedan; Kang, Liqun; Zhu, Jiexin; Liu, Longxiang; Zhang, Qing; Brett, Dan J.L.; Shearing, Paul R.; Mai, Liqiang; Parkin, Ivan P.; He, Guanjie, Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions, Chem Catalysis, Volume 2, Issue 11, 2022, Pages 3254-3270,DOI: https://doi.org/10.1016/j.checat.2022.09.023.
    16. Sun, Hongman; Wang, Chunfen; Sun, Shuzhuang; Lopez, Antonio T.; Wang, Youhe; Zeng, Jingbin; Liu, Zhen; Yan, Zifeng; Parlett, Christopher M.A.; Wu, Chunfei, XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process, Separation and Purification Technology, Volume 298, 2022, 121622,DOI: https://doi.org/10.1016/j.seppur.2022.121622.
    17. Hongman Sun, Yu Zhang, Chunfen Wang, Mark A. Isaacs, Ahmed I. Osman, Yehong Wang, David Rooney, Youhe Wang, Zifeng Yan, Christopher M.A. Parlett, Feng Wang, Chunfei Wub, “Integrated carbon capture and utilization: Synergistic catalysis between highly dispersed Ni clusters and ceria oxygen vacancies”, Chemical Engineering Journal 437 (2022) 135394, https://doi.org/10.1016/j.cej.2022.135394
    18. Yujie Ma, Wanpeng Lu, Xue Han, Yinlin Chen, Ivan da Silva, Daniel Lee, Alena M. Sheveleva, Zi Wang, Jiangnan Li, Weiyao Li, Mengtian Fan, Shaojun Xu, Floriana Tuna, Eric J. L. McInnes, Yongqiang Cheng, Svemir Rudic, Pascal Manuel, Mark D. Frogley, Anibal J. Ramirez-Cuesta, ́ Martin Schröder, and Sihai Yang, “Direct Observation of Ammonia Storage in UiO-66 Incorporating Cu(II) Binding Sites”, J. Am. Chem. Soc. 2022, 144, 8624−8632, https://doi.org/10.1021/jacs.2c00952
    19. Verma, Priyanka; Potter, Matthew E.; Oakley, Alice E.; Mhembere, Panashe M.; Raja, Robert, Bimetallic PdAu Catalysts within Hierarchically Porous Architectures for Aerobic Oxidation of Benzyl Alcohol, Nanomaterials 2021, 11(2), 350; https://doi.org/10.3390/nano11020350
    20. Kang, Liqun; Wang, Bolun; GĂŒntner, Andreas T.; Xu, Siyuan; Wan, Xuhao; Liu, Yiyun; Marlow, Sushila; Ren, Yifei; Gianolio, Diego; Tang, Chiu C.; Murzin, Vadim; Asakura, Hiroyuki; He, Qian; Guan, Shaoliang; Velasco-VĂ©lez Juan J.; Pratsinis, Sotiris E.; Guo, Yuzheng; Wang, Feng Ryan, The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO-CeO2Catalysts, Angew. Chem. Int. Ed. 2021, 60, 14420. DOI:https://doi.org/10.1002/anie.202102570
    21. Cano, Israel; Weilhard, Andreas; Martin, Carmen; Pinto, Jose; Lodge, Rhys W.; Santos, Ana R.; Rance, Graham A.; Åhlgren, Elina Harriet; Jónsson, Erlendur; Yuan, Jun; Li, Ziyou Y.; Licence, Peter; Khlobystov, Andrei N.; Alves Fernandes, Jesum, Blurring the boundary between homogenous and heterogeneous catalysis using palladium nanoclusters with dynamic surfaces, Nature Communications volume 12, Article number: 4965 (2021), DOI: 10.1038/s41467-021-25263-6
    22. George F. Tierney, Shahram Alijani, Monik Panchal, Donato Decarolis, Martha Briceno de Gutierrez, Khaled M. H. Mohammed, June Callison, Emma K. Gibson, Paul B. J. Thompson, Paul Collier, Nikolaos Dimitratos, E. Crina Corbos, Frederic Pelletier, Alberto Villa, and Peter P. Wells, “Controlling the Production of Acid Catalyzed Products of Furfural Hydrogenation by Pd/TiO2”, ChemCatChem 2021, 13, 5121–5133, https://doi.org/10.1002/cctc.202101036
    23. Donald R. Inns, Alexander J. Mayer, Vainius Skukauskas, Thomas E. Davies, June Callison, Simon A. Kondrat, “Evaluating the Activity and Stability of Perovskite LaMO3 Based Pt Catalysts in the Aqueous Phase Reforming of Glycerol”, Topics in Catalysis (2021) 64:992–1009, https://doi.org/10.1007/s11244-021-01449-6
    24. Zhao, Siyu; Xie, Ruikuan; Kang, Liqun; Yang, Manni; He, Xingyu; Li, Wenyao; Wang, Ryan; Brett, Dan J. L.; He, Guanjie; Chai, Guoliang; Parkin, Ivan P., “Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions”, Small Sci. 2100032, https://doi.org/10.1002/smsc.202100032
    25. Wijnand Marquart, Shaine Raseale, Gonzalo Prieto, Anna Zimina, Bidyut Bikash Sarma, Jan-Dierk Grunwaldt, Michael Claeys, and Nico Fischer, “CO2 Reduction over Mo2CBased Catalysts”, ACS Catalysis, 2021, 11, 3, 1624–1639, https://doi.org/10.1021/acscatal.0c05019
    26. Mitchell, Claire E.; Terranova, Umberto; Beale, Andrew M.; Jones, Wilm; Morgan, David J.; Sankar, Meenakshisundaram; de Leeuw, Nora H. “A surface oxidised Fe–S catalyst for the liquid phase hydrogenation of CO2”, Catal. Sci. Technol., 2021, 11, 779-784, https://doi.org/10.1039/D0CY01779E
    27. Antonis Vamvakeros, Dorota Matras, Simon D.M. Jacques, Marco di Michiel, Vesna Middelkoop, Peixi Cong, Stephen W.T. Price, Craig L. Bull, Pierre Senecal, Andrew M. Beale, “Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane”, Catalysis Today, Volume 364, 2021, Pages 242-255, https://doi.org/10.1016/j.cattod.2020.05.045.
    28. Islam, Mohammed J., Granollers Mesa, Marta, Osatiashtiani, Amin, Manayil, Jinesh C., Isaacs, Mark A., Taylor, Martin J., Tsatsos, Sotirios, Kyriakou, Georgios, “PdCu single atom alloys supported on alumina for the selective hydrogenation of furfural”, Applied Catalysis B: Environmental, Volume 299, 2021, 120652, https://doi.org/10.1016/j.apcatb.2021.120652.
    29. Huang, Haoliang, Blackman, Oliver F., Celorrio, Veronica, Russell, Andrea E., “Isolating the contributions of surface Sn atoms in the bifunctional behaviour of PtSn CO oxidation electrocatalysts”, Electrochimica Acta, Volume 390, 2021, 138811, https://doi.org/10.1016/j.electacta.2021.138811.
    30. Islam, Mohammed J., Granollers Mesa, Marta, Osatiashtiani, Amin, Taylor, Martin J., Manayil, Jinesh C., Parlett, Christopher M.A., Isaacs, Mark A., Kyriakou, Georgios, “The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural”, Applied Catalysis B: Environmental, Volume 273, 2020, 119062, https://doi.org/10.1016/j.apcatb.2020.119062.
    31. Ledendecker, Marc, Pizzutilo, Enrico, Malta, Grazia, Fortunato, Guilherme V., Mayrhofer, Karl J. J., Hutchings, Graham J., Freakley, Simon J., “Isolated Pd Sites as Selective Catalysts for Electrochemical and Direct Hydrogen Peroxide Synthesis”, ACS Catal. 2020, 10, 10, 5928–5938, https://doi.org/10.1021/acscatal.0c01305
    32. Liu, Yanan; Fu, Fengzhi; McCue, Alan; Jones, Wilm; Rao, Deming; Feng, Junting; He, Yufei; Li, Dianqing, Adsorbate-Induced Structural Evolution of Pd Catalyst for Selective Hydrogenation of Acetylene, CS Catal. 2020, 10, 24, 15048–15059, 2020, https://doi.org/10.1021/acscatal.0c03897
    33. Potter, Matthew E., Ross, Cameron P., Gianolio, Diego, Rios, Ramon, Raja, Robert, “Cobalt-containing zeolitic imidazole frameworks for C–H activation using visible-light redox photocatalysis”, Catal. Sci. Technol., 2020, 10, 7262-7269, DOI: 10.1039/D0CY01061H.
    34. Phuoc Hoang Ho, Giancosimo Sanghez de Luna, Saverio Angelucci, Andrea Canciani, Wilm Jones, Donato Decarolis, Francesca Ospitali, Elena Rodriguez Aguado, Enrique RodrĂ­guez-CastellĂłn, Giuseppe Fornasari, Angelo Vaccari, Andrew M. Beale, Patricia Benito, “Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO2 methanation”, Applied Catalysis B: Environmental, Volume 278, 2020, 119256, https://doi.org/10.1016/j.apcatb.2020.119256.
    35. Kang, Liqun, Wang, Bolun, Thetford, Adam, Wu, Ke, Danaie, Mohsen, He, Qian, Gibson, Emma K., Sun, Ling‐Dong, Asakura, Hiroyuki, Catlow, C. Richard A., Wang, Feng Ryan. “Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation”, Angew. Chem. Int. Ed. 2021, 60, 1212., https://doi.org/10.1002/anie.202008370
    36. Lin, L., Sheveleva, A.M., da Silva, I. et al. “Quantitative production of butenes from biomass-derived Îł-valerolactone catalysed by hetero-atomic MFI zeolite.”, Nature Materials (2020), https://doi.org/10.1038/s41563-019-0562-6
    37. Matthew E Potter, Lauren N. Riley, Alice E. Oakley, Panashe M. Mhembere, June Callison and Robert Raja, “The influence of porosity on nanoparticle formation in hierarchical aluminophosphates”, Beilstein Journal of Nanotechnology, https://dx.doi.org/10.3762/bxiv.2019.35.v1
    38. Shan Jiang, Harrison J. Cox, Evangelos I. Papaioannou, Chenyang Tang, Huiyu Liu, Billy J. Murdoch, Emma K. Gibson, Ian S. Metcalfe, John S. O. Evans and Simon K. Beaumont, “Shape-persistent porous organic cage supported palladium nanoparticles as heterogeneous catalytic materials”, Nanoscale, https://dx.doi.org/10.1039/C9NR04553H
    39. Hasliza Bahruji , Norli Abdullah , Scott M. Rogers , Peter P. Wells , C. Richard A. Catlow , Michael Bowker, “Pd local structure and size correlations on the activity of Pd/ TiO2 for photocatalytic reforming of methanol” ,Physical Chem Chem Physics, https://dx.doi.org/10.1039/C9CP00826H
    40. Samuel D. Cosham, Veronica Celorrio, Alexander N. Kulak and Geoffrey Hyett,”Observation of visible light activated photocatalytic degradation of stearic acid on thin films of tantalum oxynitride synthesized by aerosol assisted chemical vapour deposition”, Dalton Transactions (2019) https://doi.org/10.1039/C8DT04638G
    41. Stuart A. Bartlett , Emma V. Sackville , Emma K. Gibson , Veronica Celorrio , Peter P. Wells , Maarten Nachtegaal , Stafford W. Sheehan , Ulrich Hintermair “Evidence for tetranuclear bis-ÎŒ-oxo cubane species in molecular iridium-based water oxidation catalysts from XAS analysis”, Chemical Communications (2019) https://doi.org/10.1039/C9CC02088H
    42. Caio V.S. Almeida, Denis S. Ferreira, HaoliangHuang, Ana C. Gaiotti, Giuseppe A. Camara, Andrea E.Russell, Katlin I.B. Eguiluz, Giancarlo R. Salazar-Banda, “Highly active Pt3Rh/C nanoparticles towards ethanolelectrooxidation. Influence of the catalyst structure”, Applied Catalysis B (2019) https://doi.org/10.1016/j.apcatb.2019.04.078   
    43. Moritz Wolf, Emma Kate Gibson, Ezra J. Olivier, Jan H Neethling, C. Richard A. Catlow, Nico Fischer, and Michael Claeys, “Water-induced formation of cobalt-support compounds under simulated high conversion Fischer-Tropsch environment”, ACS Catalysis (2019) https://doi.org/10.1021/acscatal.9b00160
    44. A. M. Messinis , S. L. J. Luckham , P. P. Wells, D. Gianolio, E. K. Gibson , H. M. O’Brien , H. A. Sparkes, S. A. Davis, J. Callison, D. Elorriaga , O. Hernandez-Fajardo, and R. B. Bedford , “The highly surprising behaviour of diphosphine ligands in iron-catalysed Negishi cross-coupling”, Nature Catalysis (2019), 2, 123.
    45. Xu, R. et al. Nanoporous carbon: Liquid-free synthesis and geometry dependent catalytic performance Acs Nano (2019) https://doi.org/10.1021/acsnano.8b09399
    46. M.J. Lawrence, V. Celorrio, X. Shi, Q. Wang, A. Yanson, N.J.E. Adkins, M. Gu, J. RodrĂ­guez-LĂłpez, P. Rodriguez. Electrochemical Synthesis of Nanostructured Metal-doped Titanates and Investigation of Their Activity as Oxygen Evolution Photoanodes. Aceptted in ACS Applied Energy Materials.
  • Previous publications â–Œ

    1. Liu, Y. et al. Evolution of palladium sulfide phases during thermal treatments and consequences for acetylene hydrogenation Journal Of Catalysis 364, 204 – 215, doi:10.1016/j.jcat.2018.05.018 (2018)
    2. Greenaway, A. et al. Operando Spectroscopic Studies of Cuñ€“SSZ-13 for NH3ñ€“SCR deNOx Investigates the Role of NH3 in Observed Cu(II) Reduction at High NO Conversions Topics In Catalysis 50, doi:10.1007/s11244-018-0888-3 (2018)
    3. Goodarzi, F. et al. Methanation of CO2 over Zeolite-Encapsulated Nickel Nanoparticles Chemcatchem doi:10.1002/cctc.201701946 (2018)
    4. J. Callison , N. D. Subramanian , S. M. Rogers , A. Chutia , D. Gianolio , C. R. A. Catlow , P. P. Wells , N. Dimitratos. Directed aqueous-phase reforming of glycerol through tailored platinum nanoparticles. Applied Catalysis B: Environmental 238, 618 – 628
    5. G. Malta , S.A. Kondrat , S.J. Freakley , C. Davies , S. Dawson , X. Liu , L. Lu , K.
      Dymkowski, F. Fernandez-Alonso, S. Mukhopadhyay, E.K. Gibson, P.P. Wells, S.F. Parker, C.J. Kiely, G.J. Hutchings. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study. ACS Catalysis (2018), DOI: 10.1021/acscatal.8b02232
    6. V. Celorrio , L. Calvillo , C.A.M. Van Den Bosch , G. Granozzi , A. Aguadero , A.E. Russell, D.J. Fermin. Mean intrinsic activity of single Mn sites at LaMnO3 nanoparticles towards the oxygen reduction reaction. ChemElectroChem (2018), DOI: 10.1002/celc.201800729
    7. H. Huang, A.B. Ahmed Amine Nassr, V. Celorrio, S.F.R. Taylor, V. Kumar Puthiyapura, C. Hardacre, D.J.L. Brett, A.E. Russell. Effects of heat treatment atmosphere on the structure and activity of Pt3Sn nanoparticle electrocatalysts: a characterisation case study. Faraday Discussions (2018) DOI: 10.1039/C7FD00221A.
    8. S.M. Rogers, C. R.A. Catlow, D. Gianolio, P. Wells, N. Dimitratos. Supported Metal
      Nanoparticles with Tailored Catalytic Properties through Sol immobilisation: Applications for the Hydrogenation of Nitrophenols. Faraday Discussions (2018) DOI: 10.1039/C7FD00216E
    9. C. Genovese, M.E. Schuster, E.K. Gibson, D. Gianolio, V. Posligua, R. Grau-Crespo, G. Cibin, P. Wells, D. Garai, V. Solokha, S. Krick Calderon, J.J. Velasco-Velez, C. Ampelli, S. Perathoner, G. Held, G. Centi, R. Arrigo. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nature Communications (2018) DOI: 10.1038/s41467-018-03138-7
    10. S. Guan, P.R. Davies, E.K. Gibson, D. Lennon, G.E. Rossi, J.M. Winfield, J. Callison, P.P Wells, D.J. Willock. Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene. Faraday Discussions (2018), DOI: 10.1039/C8FD00005K
    11. V. Celorrio, L. Calvillo, G. Granozzi, A.E. Russell, D.J. Fermin. AMnO3 (A = Sr, La, Ca, Y) perovskite oxides as oxygen reduction electrocatalysts. Topics in Catalysis (2018), DOI: 10.1007/s11244-018-0886-5
    12. T. Parmentier, S.R Dawson, G. Malta, L. Lu, T.E. Davies, S.A. Kondrat, S.J. Freakley, C.J. Kiely, G.J. Hutchings. Homocoupling of Phenylboronic Acid using Atomically Dispersed Gold on Carbon Catalysts: Catalyst Evolution Before Reaction. ChemCatChem (2018), DOI:10.1002/cctc.201701840
    13. P. Hellier, P.P. Wells, D. Gianolio, M. Bowker. VOx/Fe2O3 Shell–Core Catalysts for the Selective Oxidation of Methanol to Formaldehyde. Topics in Catalysis (2018), DOI: 10.1007/s11244-017-0873-2
    14. A. Chutia, E. K. Gibson, M. R. Farrow, P. Wells, D. O. Scanlon, N. Dimitratos, D. J. Willock, C. R. A. Catlow. The adsorption of Cu on the CeO2(110) surface. Phys. Chem. Chem. Phys. (2017), 19, 27191-27203
    15. Rogers, S. Designing metal nanoparticles for catalysis, Thesis, UCL (2017)
    16. A. G. Jarvis, L. Obrecht, P. J. Deuss, W. Laan, E. K. Gibson, P. Wells, P. Kamer. Enzyme activity by design: an artificial rhodium hydroformylase for linear aldehydes. Angewandte Chemie International Edition (2017), 56, 13596-13600
    17. E.K. Dann, E.K. Gibson, R.A. Catlow, P. Collier, T.E. Erden, D. Gianolio, C. Hardacre, A. Kroner, A. Raj, A. Goguet, P. Wells. Combined in situ XAFS/DRIFTS Studies of the Evolution of Nanoparticle Structures from Molecular Precursors. Chemistry Of Materials (2017), 9, 7515-7523.
    18. E. K. Gibson , C. E. Stere , B. Curran-Mcateer , W. Jones , G. Cibin , D. Gianolio , A. Goguet , P. Wells , C. R. A. Catlow , P. Collier , P. Hinde , C. Hardacre. Probing the role of a non-thermal plasma (NTP) in the hybrid NTP-catalytic oxidation of CH4. Angewandte Chemie International Edition (2017), 56, 9351-9355.
    19. G. Malta, S. A. Kondrat, S. J. Freakley, C. J. Davies, L. Lu, S. Dawson, A. Thetford, E. K. Gibson, D. J. Morgan, W. Jones, P. P. Well, P. Johnston, C. R. A. Catlow, C. J. Kiely, G. J. Hutchings. Identification of single site gold catalysis in acetylene hydrochlorination. Science (2017), 355, 1399- 1403
    20. S.M. Rogers, C. R. A. Catlow, C. E. Chan-thaw, A. Chutia, N. Jian, R. E. Palmer, M. Perdjon, A. Thetford, N. Dimitratos, A. Villa, P. Wells. Tandem Site and Size Controlled Pd Nanoparticles for the Directed Hydrogenation of Furfural. ACS Catal, (2017) 7, 2266
    21. V. Celorrio, L. Calvillo Lamana , E. Dann , G. Granozzi , A. Aguadero , D. Kramer , A. Russell, D. J. FermĂ­n. Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency. Catal.Sci. Technol. (2016), 6, 7231
    22. F. Wang, R. BĂŒchel, A. Savitsky, M. Zalibera, D. Widmann, S. E. Pratsinis, W. Lubitz, F. SchĂŒth. In Situ EPR Study of the Redox Properties of CuO−CeO2 Catalysts for Preferential CO Oxidation (PROX). ACS Catalysis, 2016, 6, 3520-3530
    23. H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, G. Lalev. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal, (2016) 343, 133.
    24. M. Khaled, A. Chutia, J. Callison, P. P. Wells, E. Gibson, A. M. Beale, C. R. A. Catlow, R. Raja. Design and control of Lewis acid sites in Sn-substituted microporous architectures. Journal of Materials Chemistry A, 2016,4, 5706-5712
    25. E. N. K. Glover, S. G. Ellington, G. Sankar and R. G. Palgrave. The nature and effects of rhodium and antimony dopants on the electronic structure of TiO2: towards design of Z-scheme photocatalysts. J. Mater. Chem. A, 2016,4, 6946-6954
    26. S. Chapman, C. Brookes, M. Bowker, E. K. Gibson, P. P. Wells. Design and stabilisation of a high area iron molybdate surface for the selective oxidation of methanol to formaldehyde. Faraday Discussion, (2016) 188, 115-129
    27. L. Sandbrink, E. Klindtworth, H. U. Islam, A. M. Beale and R. Palkovits. ReOx/TiO2: A Recyclable Solid Catalyst for Deoxydehydration. ACS Catalysis, 2016, 6, 677-680.
    28. C. Hammond, D. Padovan, A. Al-Nayili, P. P. Wells, E. K. Gibson and N. Dimitratos. Identification of Active and Spectator Sn Sites in Sn-ÎČ Following Solid-State Stannation, and Consequences for Lewis Acid Catalysis. Chemcatchem, 2015, 7, 3322-3331.
    29. X. Fan, R. Vakili, E. Gibson, S. Chansai, S. Xu, P. Wells, C. Hardacre, A. Walton, N. Aljanabi. Understanding the CO oxidation on Pt nanoparticles supported on MOFs by operando XPS. ChemCatChem (2018), DOI: 10.1002/cctc.201801067
    30. E. Nowicka , C. Reece , S.M. Althahban , K. M.H. Mohammed , S.A. Kondrat , D.J. Morgan, Q. He , D.J. Willock , S. Golunski , C.J. Kiely , G.J. Hutchings. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based catalysts. Acs Catalysis 2018, 8 (4), pp 3454–3468
    31. Al-Nayili, A. Novel Lewis acidic zeolites as heterogeneous catalysts for liquid phase chemistry (2017)
    32. L. Calvillo, L. Mendez De Leo, S.J. Thompson, S.W.T. Price, E.J. Calvo, A.E. Russell. In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts. Journal of Electroanalytical Chemistry (2018), DOI:10.1016/j.jelechem.2017.09.060
    33. K. Y. Monakhov , J. Van Leusen , P. Kogerler , E.-l. Zins , M. E. Alikhani, M. Tromp , A. A. Danopoulos , P. Braunstein. Linear, Trinuclear Cobalt Complexes with o -Phenylene-bis-Silylamido Ligands. Chemistry – A European Journal (2017) 23, 6504-6508.
    34. DOI:10.1007/s11244-018-0888-3
    35. E. K. Gibson, E. M. Crabb, D. Gianolio, A. E. Russell, D. Thompsett, P. P. Wells. Understanding the role of promoters in catalysis: operando XAFS/DRIFTS study of CeOx/Pt/Al2O3 during CO oxidation. Catalysis, Structure & Reactivity (2017) 3, 5
    36. A.A. Danopoulos, P. Braunstein, K.Y. Monakhov, J. van Leusen, P. Kögerler, M. Clémancey, J.-M. Latour, A. Benayad, M. Tromp, E. Rezabalh, G. Frison. Heteroleptic, two-coordinate [M(NHC){N(SiMe3)2}] (M = Co, Fe) complexes: synthesis, reactivity and magnetism rationalized by an unexpected metal oxidation state. Dalton Trans., 2017,46, 1163-1171
    37. M. E. Potter, J. M. Purkis, M. Perdjon, P. P. Wells, R. Raja. Understanding the molecular basis for the controlled design of ruthenium nanoparticles in microporous aluminophosphates. Mol. Syst. Des. Eng. (2016)1, 335
    38. C. Brookes, M. Bowker, P. P. Wells. Catalysts for the Selective Oxidation of Methanol. Catalysts, (2016) 6, 92
    39. A. M. Gill, C. S. Hinde, R. K. Leary, M. E. Potter, A. Jouve, P. P. Wells, P. A. Midgley, J. M. Thomas, R. Raja. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry. ChemSusChem, 2016, 9, 423-427.
    40. S. A. Kondrat, P. J. Smith, P. P. Wells, P. A. Chater, J. H. Carter, D. J. Morgan, E. M. Fiordaliso, J. B. Wagner, T. E. Davies, L. Lu, J. K. Bartley, S. H. Taylor, M. S. Spencer, C. J. Kiely, G. J. Kelly, C. W. Park, M. J. Rosseinsky, G. J. Hutchings. Stable amorphous georgeite as a precursor to a highactivity catalyst. Nature, 2016, 531, 83-87.
    41. A. Al-Nayili, K. Yakabi, C. Hammond. Hierarchically porous BEA stannosilicates as unique catalysts for bulky ketone conversion and continuous operation. Journal of Materials Chemistry A, 2016, 4, 1373-1382.
    42. Q. Yang, W. Jones, P. P. Wells, D. Morgan, L. Dong, B. Hu, N. Dimitratos, M. Dong, M. Bowker, F. Besenbacher, R. Su, G. Hutchings. Exploring the mechanisms of metal co-catalysts in photocatalytic reduction reactions: Is Ag a good candidate?. Applied Catalysis A: General, 2016, 518, 213-220.
    43. S. Iqbal, S. A. Kondrat, D. R. Jones, D. C. Schoenmakers, J. K. Edwards, L. Lu, B. R. Yeo, P. P. Wells, E. K. Gibson, D. J. Morgan, C. J. Kiely and G. J. Hutchings. Ruthenium Nanoparticles Supported on Carbon: An Active Catalyst for the Hydrogenation of Lactic Acid to 1,2-Propanediol. ACS Catalysis, 2015, 5, 5047-5059.
    44. C. Brookes, M. Bowker, E. K. Gibson, D. Gianolio, K. M. H. Mohammed, S. Parry, S. M. Rogers, I. P. Silverwood and P. P. Wells. In situ spectroscopic investigations of MoOx/Fe2O3 catalysts for the selective oxidation of methanol. Catalysis Science & Technology, 2016, 6, 722-730.
    45. S. M. Rogers, C. R. A. Catlow, C. E. Chan-Thaw, D. Gianolio, E. K. Gibson, A. L. Gould, N. Jian, A. J. Logsdail, R. E. Palmer, L. Prati, N. Dimitratos, A. Villa and P. P. Wells. Tailoring Gold Nanoparticle Characteristics and the Impact on Aqueous-Phase Oxidation of Glycerol. ACS Catalysis, 2015, 5, 4377-4384.
    46. C. S. Hinde, A. M. Gill, P. P. Wells, T. S. A. Hor and R. Raja. Utilizing Benign Oxidants for Selective Aerobic Oxidations Using Heterogenized Platinum Nanoparticle Catalysts. Chempluschem, 2015, 80, 1226
    47. C. S. Hinde, D. Ansovini, P. P. Wells, G. Collins, S. Van Aswegen, J. D. Holmes, T. S. A. Hor and R. Raja. Elucidating Structure–Property Relationships in the Design of Metal Nanoparticle Catalysts for the Activation of Molecular Oxygen. ACS Catalysis, 2015, 5, 3807-3816
    48. E. K. Gibson, A. M. Beale, C. R. A. Catlow, A. Chutia, D. Gianolio, A. Gould, A. Kroner, K. M. H. Mohammed, M. Perdjon, S. M. Rogers and P. P. Wells. Restructuring of AuPd Nanoparticles Studied by a Combined XAFS/DRIFTS Approach. Chemistry of Materials, 2015, 27, 3714-3720.
    49. N. J. Brown, A. Garcia-Trenco, J. Weiner, E. R. White, M. Allinson, Y. Chen, P. P. Wells, E. K. Gibson, K. Hellgardt, M. S. P. Shaffer and C. K. Williams. From Organometallic Zinc and Copper Complexes to Highly Active Colloidal Catalysts for the Conversion of CO2 to Methanol. ACS Catalysis, 2015, 5, 2895-2902.
    50. M. Bowker, M. House, A. Alshehri1, C. Brookes, E.K. Gibson, P.P. Wells. Selectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdate. Catal. Struct. React., 2015, 1, 95-100
    51. G. J. Sherborne, M. R. Chapman, A. J. Blacker, R. A. Bourne, T. W. Chamberlain, B. D. Crossley, S. J. Lucas, P. C. McGowan, M. A. Newton, T. E. O. Screen, P. Thompson, C. E. Willans and B. N. Nguyen. Activation and Deactivation of a Robust Immobilized Cp*Ir-Transfer Hydrogenation Catalyst: A Multielement in Situ X-ray Absorption Spectroscopy Study. J. Am. Chem. Soc., 2015, 137, 4151-4157.
    52. J.-C. Buffet, N. Wanna, T. A. Q. Arnold, E. K. Gibson, P. P. Wells, Q. Wang, J. Tantirungrotechai and D. O’Hare. Highly Tunable Catalyst Supports for Single-Site Ethylene Polymerization. Chemistry of Materials, 2015, 27, 1495-1501.
    53. W. Jones, R. Su, P. P. Wells, Y. Shen, N. Dimitratos, M. Bowker, D. Morgan, B. B. Iversen, A. Chutia, F. Besenbacher, G. Hutchings. Optimised photocatalytic hydrogen production using core– shell AuPd promoters with controlled shell thickness. Physical Chemistry Chemical Physics, 2014, 16, 26638-26644.
    54. C. Brookes, P. P. Wells, N. Dimitratos, W. Jones, E. K. Gibson, D. J. Morgan, G. Cibin, C. Nicklin, D. Mora-Fonz, D. O. Scanlon, C. R. A. Catlow, M. Bowker. The Nature of the Molybdenum Surface in Iron Molybdate. The Active Phase in Selective Methanol Oxidation. Journal of Physical Chemistry C, 2014, 118, 26155-26161.
    55. D. S. Bhachu, S. Sathasivam, G. Sankar, D. O. Scanlon, G. Cibin, C. J. Carmalt, I. P. Parkin, G. W. Watson, S. M. Bawaked, A. Y. Obaid, S. Al-Thabaiti and S. N. Basahel. Solution Processing Route to Multifunctional Titania Thin Films: Highly Conductive and Photcatalytically Active Nb:TiO2. Advanced Functional Materials, 2014, 24, 5075-5085.
    56. M. M. Forde, R. D. Armstrong, R. McVicker, P. P. Wells, N. Dimitratos, Q. He, L. Lu, R. L. Jenkins, C. Hammond, J. A. Lopez-Sanchez, C. J. Kiely, G. J. Hutchings. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pretreatment. Chemical Science, 2014, 5, 3603-3616.
    57. C. Brookes, P. P. Wells, G. Cibin, N. Dimitratos, W. Jones, D. J. Morgan and M. Bowker. Molybdenum Oxide on Fe2O3 Core–Shell Catalysts: Probing the Nature of the Structural Motifs Responsible for Methanol Oxidation Catalysis. ACS Catalysis, 2014, 4, 243-250.
    58. Beale, Andrew M., Lezcano-Gonzalez, Ines, Maunula, Teuvo, Palgrave, Robert G., Development and characterization of thermally stable supported V–W–TiO2 catalysts for mobile NH3–SCR applications, Catalysis, Structure & Reactivity, 2014, 1, 25-34.

Comments are closed.